Seabed
mining is
an emerging industrial activity (Kyoda 2017, Economist [1]). It is at
the margin of commercial exploitation (Tasof 2017, Hoyt et al. 2017,
World Bank [2]). A nascent regulatory framework is prepared by the
International
Seabed Authority applying
the United Nations Convention on the Law of the Sea (UNCLOS).
Against this background, this essay
describes some generic features of seabed mining. It will address
neither specific technological choices nor the environmental conditions
at a given mining site. Mining at the seabed has challenging
societal, technical and environmental features. Therefore, the
question, what advice offer best practices for terrestrial mining
sites, drives the thread of my thoughts [3].
In
qualifying terms, seabed mining entails
operating remotely controlled technology in a sensitive environment
that is difficult to monitor and
inaccessible (Van Dover 2011, Sharma
2015, Lallier and Maes 2016, Campbell et al. 2016, Brown 2017,
Aleynek et al. 2017, Durden et al. 2018).
When analysing the societal activity 'seabed mining' regarding
system features then it comes likely that it will show
systemic ‘wicked behaviours’ of its natural, technological and
governance sub-systems (Kowarsch et al. 2016, Alford and Head 2017). To
establish sound technical, operational and regulatory specifications
for seabed mining, that is to set up its system governance, is
challenging, even without systemic ‘wicked behaviours'. To
illustrate the challenge, best practices for operating a terrestrial
mining site may offer guidance such as ‘a practice that is not
acceptable for a terrestrial mining site is neither acceptable for a
marine mining site’.
To
imagine a lively scenario, one may consider an open-pit mine in the
high Arctic, for example at the Wrangel Island, as follows: - to operate at the surface in
harsh environment that is difficult to monitor; - to operate a remote
place that temporarily gets inaccessible; - to use new technology
with high capability of autonomous operations; - to undertake human
intervention only through remote control; and - to apply a recently
developed regulatory framework.
I wonder, whether under such
circumstances mining the Wrangel Island would happen, at all.
Consequently, what about mining at the seabed, now?
However,
when going to mine the Wrangel Island responsibly, then best mining
practices would consider the lifetime of the mine, from exploration
through the operation to closure as well as treats the societal
contexts of mining (Nurmi 2017). Furthermore, such best practices,
often called 'responsible
mining', also advocate a participatory approach to
regulation, governance and operational decision making. Such
practices often are labelled as 'social licence to operate' (Boutlier
2014, Moffat and Zang 2014, Buhmann 2016, Falk 2016, Filer and
Gabriel 2017).
Thus, best terrestrial mining practices take
governance issues and governability into primary focus.
As
learned elsewhere (Hämäläinen 2015, Head and Xiang 2016, Termeer
et al. 2016), participatory approaches are an essential means to
maintain governability capabilities in spite of systemic wicked
behaviours. Such capabilities include adaptive, deliberative and
participatory practices, reflexivity and variety of frames,
resilience to uncertainties, responsiveness and capability to
observe, revitalisation to unblock unproductive patterns, rescaling
as well as cross-scale interactions. The
governance system in place for regulating and surveillance of mining
sites at the seabed, that is, the International Seabed Authority and
national regulators for the Exclusive Economic Zone, likely will be
unable to handle systemic wicked behaviour. Their design did not have
this purpose in mind. Consequently, practices of 'social licence to
operate' could help governing seabed mining appropriately. However,
such methods are not straight forward as Filer and Gabriel (2017)
discuss given the SOLWARA mining site off Papua New Guinea that is
licensed to Nautilus Minerals Ltd.
In the
absence of better approaches, robust participatory system governance
of seabed mining would address differences in value systems, insights
into different interests, and sharing of available knowledge among
stakeholders as well it could offer the capacity building for third
parties, an involvement of civil society and operational security for
commercial and regulatory parties. Finally,
a process of a 'social licence to operate' involving a wide range of
stakeholders would allow to pick up the first paradigm that resources
at the sea bottom are part of the common heritage of humankind (van
Doorn 2016, Jaeckle et al. 2017). Hence, installing an ethics-based
approach of ‘responsible seabed mining' could be part of
comprehensive system governance for ‘blue growth' and
‘sustainable development'.
Literature:
Hoyt, S. P., H, P. L., Thebaud, O., & Van Dover, C. L. (2017). Addressing the Financial Consequences of Unknown Environmental Impacts in Deep-Sea Mining. Annales Des Mines - Responsabilité et Environnement, 1(85), 43–48. Retrieved from https://www.cairn.info/revue-responsabilite-et-environnement-2017-1-page-43.htm
Jaeckel, A., Gjerde, K. M., & Ardron, J. A. (2017). Conserving the common heritage of humankind - Options for the deep-seabed mining regime. Marine Policy, 78(January), 150–157. https://doi.org/10.1016/j.marpol.2017.01.019
Tasoff, H. (2017). The Wild West of deep-Sea Mining. Kakai Magazine. Retrieved from www.hakaimagazine.com
van Doorn, E. (2016). Environmental aspects of the Mining code: Preserving humankind’s common heritage while opening Pardo’s box? Marine Policy, 70, 192–197. https://doi.org/10.1016/j.marpol.2016.02.022
Other literature sources used to write the blog:
Alford, J., & Head, B. W. (2017). Wicked and less wicked problems: a typology and a contingency framework. Policy and Society, 36(3), 397–413. https://doi.org/10.1080/14494035.2017.1361634
Boutilier, R. G. (2014). Frequently asked questions about the social licence to operate. Impact Assessment and Project Appraisal, 32(4), 263–272. https://doi.org/10.1080/14615517.2014.941141
Brown, C. L. (2017). Deep sea mining and robotics: Assessing legal, societal and ethical implications. In 2017 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO) (pp. 1–2). IEEE. https://doi.org/10.1109/ARSO.2017.8025201
Buhmann, K. (2016). Public Regulators and CSR: The “Social Licence to Operate” in Recent United Nations Instruments on Business and Human Rights and the Juridification of CSR. Journal of Business Ethics, 136(4), 699–714. https://doi.org/10.1007/s10551-015-2869-9
Campbell, L. M., Gray, N. J., Fairbanks, L., Silver, J. J., Gruby, R. L., Dubik, B. A., & Basurto, X. (2016). Global Oceans Governance: New and Emerging Issues. Annual Review of Environment and Resources, 41(1), 517–543. https://doi.org/10.1146/annurev-environ-102014-021121
Durden, J. M., Jones, D. O. B., Murphy, K., Jaeckel, A., Van Dover, C. L., Christiansen, S., … Durden, J. M. (2017). A procedural framework for robust environmental management of deep-sea mining projects using a conceptual model. Marine Policy, 84(August), 193–201. https://doi.org/10.1016/j.marpol.2017.07.002
Falck, W. E. (2016). Social licencing in mining—between ethical dilemmas and economic risk management. Mineral Economics, 29(2–3), 97–104. https://doi.org/10.1007/s13563-016-0089-0
Filer, C., & Gabriel, J. (2017). How could Nautilus Minerals get a social licence to operate the world’s first deep sea mine? Marine Policy, (October), 1–7. https://doi.org/10.1016/j.marpol.2016.12.001
Hämäläinen, T. J. (2015). Governance Solutions for Wicked Problems: Metropolitan Innovation Ecosystems as Frontrunners to Sustainable Well-Being. Technology Innovation Management Review, 5(10), 31–41. Retrieved from https://timreview.ca/sites/default/files/article_PDF/Hämäläinen_TIMReview_October2015.pdf
Head, B. W., & Xiang, W.-N. (2016). Why is an APT approach to wicked problems important? Landscape and Urban Planning, 154, 4–7. https://doi.org/10.1016/j.landurbplan.2016.03.018
Kowarsch, M., Garard, J., Riousset, P., Lenzi, D., Dorsch, M. J., Knopf, B., … Edenhofer, O. (2016). Scientific assessments to facilitate deliberative policy learning. Palgrave Communications, 2, 16092. https://doi.org/10.1057/palcomms.2016.92
Lallier, L. E., & Maes, F. (2016). Environmental impact assessment procedure for deep seabed mining in the area: Independent expert review and public participation. Marine Policy, 70, 212–219. https://doi.org/10.1016/j.marpol.2016.03.007
Moffat, K., & Zhang, A. (2014). The paths to social licence to operate: An integrative model explaining community acceptance of mining. Resources Policy, 39(1), 61–70. https://doi.org/10.1016/j.resourpol.2013.11.003
Nurmi, P. A. (2017). Green Mining - A Holistic Concept for Sustainable and Acceptable Mineral Production. Annals of Geophysics, 60(7). https://doi.org/10.4401/ag-7420
Sharma, R. (2015). Environmental Issues of Deep-Sea Mining. Procedia Earth and Planetary Science, 11, 204–211. https://doi.org/10.1016/j.proeps.2015.06.026
Termeer, C. J. A. M., Dewulf, A., Karlsson-Vinkhuyzen, S. I., Vink, M., & van Vliet, M. (2016). Coping with the wicked problem of climate adaptation across scales: The Five R Governance Capabilities. Landscape and Urban Planning, 154, 11–19. https://doi.org/10.1016/j.landurbplan.2016.01.007